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The process of erosional destruction of materials is analyzed within the framework 
of the model of a damaged continuum. Emphasis is given to nonsteady erosion typical of 
cavitational damage and damage caused by drops of liquid. The model predicts the loss of 
transparency of the material, the time of beginning of destruction, and the rate of erosion 
up to the establishment of a microrelief with depressions of constant depth on the eroded 
surface. It is shown that in the final stage the depth of wear increases in proportion to 
the logarithm of the time of the process. The proposed theory combines the concept of 
fatigue fracture advanced in [i] (also see the discussion of the time dependence of cavi- 
tational fractures in [2]) and the principles of the mechanics of a damaged continuum. Due 
to its great practical importance, the problem of modeling nonsteady erosion has attracted 
the attention of many investigators. Most of the existing erosion models were examined 
in [3, 4]. A large amount of experimental data on rainfall erosion of different materials 
was represented in the semiempirical model in [5]. 

i. General Formulation of the Problem. Impact erosion develops under conditions of 
two-phase flow about bodies. It is convenient to examine abstractions apart from a specific 
form of erosive medium, here assigning the necessary boundary conditions on the surface under- 
going destruction. The problem of erosion can be examined as a problem of two-phase flow 
about a body [6, 7] and a problem of fracture mechanics [8]. Let us dwell on the latter case. 
The two-phase flow is a source of particles which create shock loads on the surface of the 
body (for the sake of definiteness, we will examine erosion by drops). The reaction of the 
material to the impact of these particles may differ, depending on the properties of the 
material and the parameters of the load. Nonsteady erosion is generally seen under low- 
intensity loads. We thus propose that the material is capable of withstanding a fairly 
large number of impacts on one contact spot before the thickness of the layer of material 
removed is comparable to the diameter of the drops (in fact, this number ranges within 10 3- 
10 7 impactsA (vd~/4), where dp is the diameter of a drop). In this case, erosion can be 
regarded as the result of continuous accumulation of damages in the material. To describe 
the state of the medium before fracture, we introduce a scalar measure of damage to the 
medium m(x, y, z, t) ~ 0 with normalization: m = i at the moment of complete fracture. 
The following damage summation law is valid: 

do) /d t -  (D(~, ai~, { ~ } ) ,  (l.i) 

where Oik is the stress tensor; {~m} is the set of parameters characterizing the damaged 
medium. 

Let us examine the erosion of a material which has been damaged beforehand. After the 
elapse of a certain amount of time, the material in the surface layer will be completely 
destroyed, removal of material will begin, and motion will be imparted to the surface of the 
body. We will assume that the equation of the surface is z + h(x, y, t) = 0, while two-phase 
flow occupies the region z + h(x, y, t) > 0. The condition of the moving boundary has the form 

~(x, y, --h(x, y, t), t) = I .  ( 1 . 2 )  

When a m a t e r i a l  w i t h  a c o a t i n g  u n d e r g o e s  e r o s i o n ,  t h e  f r a c t u r e  c o n d i t i o n  may b e  s a t i s f i e d  
s i m u l t a n e o u s l y  on t h e  s u r f a c e  a n d  on t h e  b o u n d a r y  b e t w e e n  t h e  c o a t i n g  a n d  s u b s t r a t e .  H o w e v e r ,  
we w i l l  n o t  e x a m i n e  t h i s  s i t u a t i o n  h e r e .  The  d u r a t i o n  o f  t h e  l a t e n t  p e r i o d  i s  d e t e r m i n e d  
a s  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  

o)(x, y, - t~(x ,  y, 0), t*) = 1. (1.3) 
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Equations (1.1)-(1.3) constitute a general model of impact erosion represented as a con- 
tinuous process, which is not always true. For example, under conditions of high-velocity 
impact, destroyed (fractured) material is removed in each impact event but cumulative 
damage is negligible. Such a process can be described phenomenologically, taking h = h(x, 
y, t) and introducing a coefficient of mass loss per particle [6, 7]. The model in [3] will 
be valid in a certain intermediate range of impact parameters. In this model, erosion was 
represented as a discrete-integral process. The model in [3] contains a large number of 
integral equations and its use poses serious difficulties even in the simplest case [4]. 
The continuum model is also complicated for the purposes of analysis, since the right side 
of (l.l) contains random parameters and processes. In fact, each event of particle impact 
against the surface is a random event. Thus, Oik(t) and ~(t) are random proesses. The 
set {g~} also contains random parameters. It follows from (1.2) that the relief formed 
on the surface is also described by a random function. Subsequent interaction of a drop 
with surface irregularities increases the disorder in the system. In general, such a 
detailed description of erosion as is given by Eqs. (1.1)-(1.3) is not necessary. Thus, 
it is possible to construct a simpler model which ignores the subtle processes which take 
place in the system. For example, in [8] a diffusion model of erosion was developed on the 
basis of the familiar analogy between the processes of thermal and erosive fracture: 

O~/Ot ~ Ua~/#z - -DO2~/#z  2 = ( ~ ) .  

H e r e ,  U ( t )  i s  t h e  r a t e  o f  e r o s i o n ;  D ( t )  = d / d t <  ( h - - < h > ) 2 / 2 ) > .  The d i f f u s i o n a l  model  i s  
simple mathematically but does not permit a sufficiently detailed examination of the erosion 
process. This; model is useful in analyzing the beginning of fracture, when D(t) ~ const. 
However, at a later stage, when D(t) * 0, it is necessary to employ hypotheses regarding 
the behavior of the function D(t). This causes serious problems if it is necessary to pre- 
dict parameters of the induced roughness as accurately as possible (such as in modeling 
turbulence, in calculating reflectivity, etc.). Presented below is one approach to the 
solution of this problem. 

2. Mode]. of Nonsteady Erosion. We will assume that at t = 0 a flat specimen is placed 
in a uniform flow of drops. After the elapse of the latent period, fractured material begins 
to be carried off. Experiments [3] show that erosion is not seen immediately over the entire 
surface~ Instead, it spreads gradually from the weakest parts of the surface to the move 
durable elements. We will write the solution of Eq. (1.3) in the form t* = t*(x, y)o The 
lifetime interval from t* to t* + At* corresponds to a certain area on the specimen surface. 
We will assume that we know the statistic of lifetimes of surface elements n(t*). Then 
the sought area is As(t*) = n(t*)At*. The specimen can be represented as consisting of 
cells of the area As(t ~) and a s haying a total area equal to unity: 

~ n( t*)d t*  = i ( 2 . 1 )  

t o 

(t~ is the minimum lifetime). 

We will formulate a problem on finding erosion parameters, including surface roughness, 
for a known statistic n(t*). The analysis is simplified if we ignore the dependence of the 
damage accumulation on ~. This limitation is not fundamentally important for an erosion 
problem but is important in modeling a stress field The scatter of the parameters {~m} is 
taken into account by the relation n(t*), so we set ~(w, Oik, {~}) = ~ (Oik). In Eq. (i.!) 
we average ow~r the ensemble of particles falling on the given area As(t*) during the time 
At. Ignoring the effects of multiple impacts - which is valid in the case of a low volu- 
metric content of particles, we represent the mean sum of the loads in the form 

~(z) = nvup .I dt' 2nrdr~(a~(r ,  z, t ' )) ,  (2.2) 
0 0 

0 is the stress tensor in the impact of a drop against a barrier; np and Up are the where Oik 

numerical density and velocity of flow of the particles; the bar corresponds to averaging 
over the ensemble of particles. 

The solution of the problem of the erosive destruction of an individual cell can be 
represented in the form 
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- -- I t~t (z), t ~ t*, 
(,) (z, t) - (z) + + %(.,.)) t > t*,  (2.3) 

where t* = i/~(01 is the duration of the latent period. 

At t > t*, on the surface we have the equation ~(-h(t), 
(2.31, we find 

t 

t %  (t))  + - (t))  = 
t* 

t) = i. Setting z = -h(t) in 

(2.4) 

Equation (2.4) predicts that the dependence of the depth of wear on time is determined by the 
law of decay of the fracture stresses with propagation into the depth of the material. This 
result is a very important difference between the present model and the models in [i, 5]. 
The latter also take into account the lifetime statistic but do not consider the time 
dependence of the rate of erosion of an individual cell. The solution of Eq. (2.4) can be 
represented in the form h = h(t, t*). To calculate themeandepth of wear, this expression 
must be averaged over the ensemble of cells: 

t 

S-h(t,  (t*)dt*. (2 .5 /  (h) ( t)  = l* )  n 

I o 

The induced roughness can be described by the rms gradient of the levels of the surface relief 
t 

6h 2 = S (-h(t, t*)--  <h> (0) 2 n(t*)dt*. (2.6)  

t 0 

Equations ( 2 . 2 ) - ( 2 . 6 )  solve the s t a t e  problem of f ind ing  the parameters of nonsteady eros ion  
from a specified lifetime statistic. 

Let us examine two fracture regimes which can be analyzed without having a detailed 
picture of the stress state. In Eq. (2.4) we set ~(s) = e-ks/t * , with k being the decay 
parameter. The corresponding solution describes the regime in which the erosion rate is 
steady 

"~(t) = (t - -  t*)/kt*, t ~ t * .  (2.7)  

It seems intuitively that the rate of erosion of an individual cell should ultimately reach 
a constant value and that Eq. (2.7) should therefore be satisfied. However, it is easily 
shown that the rms roughness increases over time in this regime as 6A 2 =(t'/k2)[(O/t*)~>- (17t*> ~]. 
The growth of depressions on the surface obviously cannot continue for an infinitely long 
time. We require that as t + ~ the condition 6h 2 = const be satisfied. This condition 
corresponds to a fracture regime in which the rate of erosion of an individual cell is 
self-similar relative to the time of beginning of fracture (dh/dt = i/kt). Thus, the depth 
of wear 

h(t)  = k -1 In ( t / t * ) .  (2.8)  
6h2= k-2((In~t * ) -- (In t* >~) , while the profile of the fracture stresses In this process 

has the form 

] ( t  + kz) / t* ,  - -  t < kz  ~ O, (~) 
L O, k z . ~  - -  1. 

It follows from (2.8) that at t + = the mean depth of wear increases as <h>(t) = k-lln(t/x), 
where �9 = exp [<in t*>(~)]. Such a law is actually observed in experiments. Figure la 
shows data from [9] on the erosion of 12% chromium steel in a flow of drops. The data was 
analyzed in the coordinates k<h>(t) - in(t/~), where points 1-5 correspond to the following 
values of impact velocity: 198; 229; 256; 284; 311 m/sec. It is evident that all of the 
points are tightly grouped around a line with single slope, i.e., the increase in wear depth 
obeys a logarithmic law. 
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Fig. 1 

To find the function n(t*), we can draw an analogy between the fatigue fracture of a 
system of cells on an eroded surface and a system of identical elastic elements such as 
springs, rods, etc. [5]. It was established by analyzing the experimental data in [i0] 

that the Weibull distribution 

( t* )  = ( t *  - t o )  ( t *  - t o )  1, (2.9) 

often used to evaluate reliability in fatigue fracture, is quite applicable to many materials 
under conditions of erosive fracture as well (in [5], we assumed D = i; in reality, the para- 
meter ~ changes within a broad range for different materials). 

Figure Ib shows time dependences of the depth of wear, rate of erosion, and rms rough- 
ness (curves 1-3, respectively) calculated for a logarithmic erosion law (2.8) on the 
assumption that lifetime distribution law (2.9) is satisfied with D = 2. There is qualita- 
tive agreement between the predicted relations and the observed laws of erosive fracture 
both under cavitation conditions [2] and under the influence of drops [4-6, 9, i0]~ To a 
certain extent, these =esults answer the questions raised in [2]. This applies especially to 
the issue of whether or not a constant erosion rate is established during fracture. It can 
definitely be said that the erosion rate cannot be constant in a fatigue process such as 
described above. However, if material is removed with each impact event and fracture is 
not related to damage accumulation, then a steady erosion rate may be established. For 
example, in the impact of solid particles, there is almost no incubation period, and the 
erosion rate reaches a steady value almost immediately. In certain cases there is a delay 
in fracture during erosion by solid particles as well, but this effect is attributable to 
the simultaneous occurrence of erosion and the deposition of particles on the surface in the 

flow [ii]. 

It is evident from Fig. Ib that the erosion rate reaches a maximum value and then de- 
creases. Meanwhile, the maximum erosion rate increases with an increase in % (k = 1 and 8 
and D = 2 for curves 2 and 4, respectively, while X = 8 and ~ = 1 for curve 5). The maximum 
erosion rate is expressed through the parameters X and D in the form 

Um = ( ~/~t~) ~tq 1/~ ~l-1/~e-g, 
where $(~, q) is the solution of the equation 

= [ l  + + > q = 

Figure 2 shows the dependence of the maximum erosion rate on the parameter q for # = i, 
2, and 3 (curves 1-3, respectively). These results show that the dispersion of the strength 
properties of the material is an important parameter characterizing resistance to erosion. 
Given the same minimum lifetime of the material, resistance to erosion decreases when i 

increases. 

It is evident from Eq. (2.10) and Fig. 2 that the maximum erosion rate depends in a 
complex manner on the duration of the latent period, i.e. [5] notwithstanding, there is 
a single relation Um(t~). This is apparently the reason for such appreciable scatter of 
data when analyzed in the coordinates Um-t ~ (this scatter is one order of magnitude and more 
in [5]). Thus, the maximum erosion rate is not a very good parameter for comparing the 

( 2 . 1 o )  
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erosion resistance of different mateials. It follows from the data in Fig. 1 that the 
decay parameter k and the effective time of erosion ~ = exp[<in t*>(~)] can be used as a 
characteristic of the capacity of a material to resistance erosion. Thus, in the general 
case, the time dependence of erosion parameters can be described by two dynamic (k, t~) and 
two statistical (~, p) parameters. 

3. Patent Period of Erosion. To simplify the analysis, we will assume that the 
material retains its elastic properties right up to fracture and that the following impul- 
sive fracture criterion [12] is satisfied 

]~o(a/a, t), ~ > ~ , ,  (3 .1)  (~,~) 
O, ~ < q , ,  

where o i s  the  maximum normal t e n s i l e  s t r e s s ;  a , ,  t h r e s h o l d  va lue  of  the  breaking  s t r e s s e s ;  
v 0, characteristic rate of damage accumulation. 

The problem of the propagation of stress waves in an elastic half-space for loading 
conditions s&mulating the impact of a drop against a barrier was examined in [13, 14]. 
The true distribution of the normal load was replaced by the mean pressure applied to the 
contact spot, the radius of which changed in accordance with the law rc(t) = ~dpupt. Thus, 
it is possible to calculate the stresses at the stage of compression of the cutbf~ signal. 
It was established in [14, 15] by comparison of calculated stresses with the observed frac- 
ture pattern that Rayleigh waves play the main role in destruction of the surface. According 
to [15], the radius of the fracture zone may be one order greater than the size of the central 
undamaged spot. For these conditions, the peripheral region makes the main contribution 
to the integral (2.2). Thus, the damages can be evaluated by using the stress values in the 
Lamb problem with an equivalent concentrated load [12]: 

(rR = (peuvdp/2C~t) ~ (~, O, ~), 

~ = [(2 - -  0~)/20co] [ 2 (t - r  t ] 
L-I/e~_--~T o+V~o~_--:-~ ,j 

(3.2) 

where Pc is the mean impact pressure; ~ ~ r/cst; 0 ---- cR/es; 7 ~ cJes; Cs,t,m is the velocity of the 
longitudinal, transverse, and surface waves, respectively; 
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W-t--yet) e 3? 2 V-l-o z + 

Inserting (3.2) into (3.1) and integrating, we obtain 

do/dt Iz=0 = n~uvnR~voF (?)/c~, ( 3 . 3 )  

where R, = pc~iflp/4~,cn is the characteristic dimension of the fracture zone; F(~) is a 
numerical coefficient dependent on the Poisson's ratio. The duration of the incubation period 
is determined from the equation m(t~) = i. Integrating (3.3), we find t o =c~/[~R~,vonpu~F (?)]. 
The product nil =tonpup~dv/4 is the incubation period after Sprinzher [5] Choosing Pc---- 
1,5,of~u~/(l ~ O~c~/p~c~) to express the dependence of impact pressure on the impact parameters 

[4], we have 

* 3 4 ni = 4.74~cR (1 + plcjpscs)~/[Vodp9~c~u~ f (~)], ( 3 . 4 )  

where  pE, cE a r e  t h e  d e n s i t y  and s p e e d  o f  sound in  t h e  l i q u i d ;  Ps i s  t h e  d e n s i t y  o f  t h e  

m a t e r i a l  o f  t h e  b a r r i e r .  

E q u a t i o n  ( 3 . 4 )  i s  i n t e r e s t i n g  in  t h e  s e n s e  t h a t  t h e  d e p e n d e n c e  o f  n~ on i m p a c t  v e l o c i t y  
a g r e e s  q u a l i t a t i v e l y  w i t h  t h e  r e l a t i o n  p r e s e n t e d  in  [ 5 ] .  F i g u r e  3 shows d i f f e r e n t  r e s u l t s  
g e n e r a l i z e d  in  [5] t o g e t h e r  w i t h  Eq. ( 3 . 4 )  ( s o l i d  l i n e )  i n  t h e  fo rm n~ = (u* /Up)  s .  S p r i n z h e r _ ,  

l 

p e r f o r m i n g  a s i m i l a r  a n a l y s i s ,  u s e d  t h e  q u a s i s t a t i c  p a r t  o f  t h e  t e n s i l e  s t r e s s e s  o ~ = ~2/$~ 
r o  

(i - ~2) in his calculations and obtained the relation n~ ~ U-p. According to [5], the data 

in Fig. 3 is generalized by the relation n~i ~ ~ u -5"7 We could point out the difficulty 
i p 

connected with determining t~, but there is nevertheless good agreement between the theoretical 
(3.4) and experimental (Fig. 3) values. The effect of drop diameter on the duration of the 
incubation period was studied in [9]. It was found that the product toed 3 remains constant with 

P 
a change in dp from 350 to 1050 Bm. This means that n~i C ~ d -i This is consistent with Eq. 

i p 
(3.4) but contradicts [5], where it was assumed that the quantity n~i ~ is independent of the 

1 
particle size. 

If an optically transparent material is subjected to erosion, then its transparency de- 
creases with time due to scattering of light on microcracks. The decrease in intensity as 
light propagates into the depth of the material is described by the equation 

df/dz = osnlI, z < O, ( 3 . 5 )  

where  o f  i s  t h e  s c a t t e r i n g  c r o s s  s e c t i o n  on a s i n g l e  c r a c k ;  n f  i s  t h e  number o f  c r a c k s  in  a 
u n i t  vo lume .  

The scattering cross section for visible light is proportional to the center section of 
the microcrack (of ~ v~/3, vf is the volume of the microcrack). Since w = nfvf, it is neces- 

sary to formulate a law of change of one of the multipliers. We adopt the following damage 
model: in each impact event per unit volume of the. medium nf0 cracks of volume vf = vf(o) are 
created. For subsequent load cycles, vf = const, nf = n*nfo , n*= npu~t~d~/4 is the number of 

1/3 218 ~ ]Iz load cycles. This means that oyn1..~o)/v j =o (nion) . From here, integrating (3.5), we 
obtain 

f/f0 ---- exp (-- • (3.6) 

where • = ~n]0 #~n~" , and a is a numerical coefficient. This model is valid in the initial 
stage of the process (before the microcracks begin to merge). Equation (3.6) can be compared 
with the results in [5]: f//0 = I/(I ~- ~0-~n*), ~. = (Pc ~?kc)['l ~ 2.19(I-- 2v)], L 0 is the initial 
size of the microcracks and k c is the critical stress intensity factor (actually, the quantity 

5 L0 was used in [5] as a refining parameter). When 9~n * ~ I, we have ]0/7--1~10-4~n*~u~ . 
On the other hand, from (3.6) at Kn* << 1 we find fo/f--l..~• i.e., Eq. (3.6) correctly 
reflects the effect of impact velocity. 

Figure 4 shows Eq. (3.6) (solid line) together with different results generalized in [5] 
by the relation shown by the dashed line. It is evident that Eq. (3.6) agrees better with the 
experimental results at Kn* > 1 than does the relation in [5]. 
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The qualitative relations obtained above are also valid in the case of the more general 
fracture criterion [16] ~v0(~/~,--~) ~(n~0) To obtain quantitative results, it is 
necessary to use a more realistic model of the interaction of a drop with a barrier and to 
discuss the assumption of the elastic character of deformation of the barrier. 
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